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Energy Derivatives and the Hamiltonian in the LHA approximation 
 
In the following development we   assume mass-scaled coordinates and atomic 
units. We now give the expressions for the Hamiltonian matrix elements for the 
gwp (equation( S1). We begin with expression for the gwp: 
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Using a local harmonic approximation of the Ehrenfest potential (equation 55 
main text), the nuclear Hamiltonian matrix elements read: 
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The derivatives are given as  
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and 
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The above equations (S2-S4) make use of the first and second derivatives of the energy 
with respect to the geometrical parameters, as expressed in equation 57 in the main text.  

 

Thanks to the work of Almlöf and Taylor1 the analytical derivatives have been presented 
systematically for a CASSCF wavefunction.  The general expressions (equation 57 main 
text) are given in equations S5  and S6.  As discussed in the main text we have three 
types of variables and derivatives:X , the orthogonal rotation of the orbitals among 
themselves as one displaces the geometry with the derivative Xα  with respect to the 

nuclear co-ordinate α ; C , the orthogonal rotation of the CI eigenvectors among 



themselves as one displaces the geometry with the derivative Cα  with respect to the 

nuclear co-ordinate; and Y , the re-othogonalization of the orbitals as one displaces the 
geometry with the derivative Sα .   

The gradient then involves EC , the gradient of the energy with respect to the rotation of 
the CI eigenvectors, EX  the gradient of the energy with respect to the rotation of the 
orbitals  and EY  the gradient of the energy with respect to the re-orthogonalization of the 
orbitals.  The leading term in the gradient Eα  is the gradient of the energy due to the 
change in the molecular Hamiltonian with nuclear geometry (the Hellmann-Feynman 
term). The gradient 1 is  given  compactly in equation S5 below. The second derivatives 
have the general form given in equation S6, where the notation is the same as in 
equation 56, e.g. ECα  is the mixed second derivative with respect to CI vector rotation 
and nuclear displacement.  Note that Sα  in equations S5 and S6 is the derivative 

overlap matrix. Quantities such as Xα have to be obtained from the coupled perturbed 

equations which have to be solved for each nuclear displacement.  These equations are 
similar to the CASSCF coupled perturbed equations 2 except that the CI vector rotation 
coefficients correspond to rotations between the Ehrenfest vector and its orthogonal 
complement. 
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